

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AXIOMATIC CHARACTERIZATIONS OF CONTINUUM STRUCTURE FUNCTIONS*

AD-A149 817

Chul Kim and Laurence A. Baxter

Department of Applied Mathematics and Statistics State University of New York at Stony Brook Stony Brook, NY 11794, USA

FILE COPY

*Research supported by the National Science Foundation under grant ECS-8306871 and by the Air Force Office of Scientific Research, AFSC, USAF, under grant AFOSR-84-0243. The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

85 01 14 130

UNCLASSIFIED ...

SECURITY CLASSIFICATION OF THIS P	A G &						
REPORT DOCUMENTATION PAGE							
18 REPORT SECURITY CLASSIFICATION			16. RESTRICTIVE MARKINGS				
UNCLASSIFIED							
28 SECURITY CLASSIFICATION AUTHORITY			3 DISTRIBUTION/AVAILABILITY OF REPORT				
70 DECLASSIFICATION/DOWNGRADING SCHEDULE			Approved for public release; distribution unlimited.				
4 PERFORMING ORGANIZATION REPORT NUMBER(S)			5. MONITORING ORGANIZATION REPORT NUMBER(S)				
			AFOSD TD CA 1000				
64 NAME OF PERFORMING ORGANIZATION		Bb. OFFICE SYMBOL	AFOSR-TR- 84_1202			2	
State University of New York		(If applicable)	Air Force Office of Scientific Research				
Sc. ADDRESS (City, State and ZIP Code)	L	7b. ADDRESS (City, State and ZIP Code)					
Department of Applied Mathematics and			Directorate of Mathematical & Information				
Statistics, Stony Brook	794-3600	Sciences, Bolling AFB DC 20332-6448					
1. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER					
AFOSR		NM	AFOSR-84-0243				
Bc. ADDRESS (City, State and ZIP Code)			10 SOURCE OF FUNDING NOS.				
			PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT	
Bolling AFB DC 20332-6448			61102F	2304	A5		
11. TITLE (Include Security Classification) AXIOMATIC CHARACTERIZATIONS OF CONTINUUM STRUCTURE FUNCTIONS							
12. PERSONAL AUTHOR(S)	TONS OF	CONTINUUM STRUC	TORE TORCTION		·		
Chul Kim and Laurence A. Baxter							
134 TYPE OF REPORT 136. TIME CI			14 DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT			OUNT	
Technical FROM		0	NOV 84			10	
17. COSATI CODES 18. SUB		18 SUBJECT TERMS (C	TERMS (Continue on reverse if necessary and identify by block number)				
FIELD GROUP SUB GR.		Reliability; continuum structure function; multistate					
			structure function.				
19. ABSTRACT (Continue on reverse if n	ecessory and	identify by block number					
A continuum structure function is a nondecreasing mapping from the unit hypercube to the unit interval. Axiomatic characterizations of the continuum structure functions based on the Barlow-Wu and Natvig multistate structure functions are derived.							
20 DISTRIBUTION	AL ARCTRACT REGULATIVE						
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS APT. DTIC USERS			21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED				
22a. NAME OF RESPONSIBLE INDIVIDUAL			22b TELEPHONE NUMBER 22c. OFFICE SYMBOL		MBOL		
MAJ Brian W. Woodruff			(Include Area Co (202) 767-	ode)	NM		
					CLASSIFIED		
DU FORM 1473, 83 APR EDITION OF 1 JAN 73 1			S CESCLETE.	UN	CTWOOTLIED		

ABSTRACT

A continuum structure function is a nondecreasing mapping from the unit hypercube to the unit interval. Axiomatic characterizations of the continuum structure functions based on the Barlow-Wu and Natvig multistate structure

functions are derived.

Available y Codes

Available project

Dist Special

AIR FORCE OFFICE OF SCIENTIFIC TO THE NOTICE OF SCIENTIFIC

KEYWORDS: Reliability; continuum structure function; multistate structure function.

AMS 1980 Subject Classification: Primary 90B25
OR/MS Index 1978 Subject Classification: Primary 721 Reliability

1. INTRODUCTION

Let $C = \{1,2,\ldots,n\}$ denote a set of components and let $\Delta = [0,1]^n$. A nondecreasing mapping $\gamma \colon \Delta \mapsto [0,1]$ with $\gamma(0) = 0$ and $\gamma(1) = 1$ is said to be a <u>continuum structure function</u> (CSF). If $\sup_{X \in \Delta} [\gamma(1_1,X) - \gamma(0_1,X)] > 0$ for each $i \in C$, where (δ_1,X) denotes $(X_1,\ldots,X_{i-1},\delta,X_{i+1},\ldots,X_n)$, γ is said to be <u>weakly coherent</u>.

Definition

Let P_1, \dots, P_r denote the r minimal path sets of a binary coherent structure function. If

$$\gamma(X) = \max_{1 \le j \le r} \min_{i \in P_j} X_i \quad (X \in \Delta),$$

Y is said to be a Barlow-Wu CSF [2].

Definition

Let $\{\phi_{\alpha},0 < \alpha \leq 1\}$ be a class of binary coherent structure functions such that $\phi_{\alpha}(\overset{Y}{\sim}_{\alpha})$ is a left-continuous and non-increasing function of α for fixed $\overset{X}{\sim}$ where $Y_{\alpha i}$ is the indicator of $\{X_i \geq \alpha\}$, $i=1,2,\ldots,n$. If

$$\gamma(X) \ge \alpha \text{ iff } \phi_{\alpha}(Y_{\alpha}) = 1 \qquad (X \in \Delta, 0 < \alpha \le 1),$$

 γ is said to be a Natvig CSF [3].

In this paper, we present axiomatic characterizations of the Barlow-Wu and Natvig CSFs. In particular, we show that γ is a Barlow-Wu CSF if and only if it satisfies the following conditions:

- Cl Y is continuous
- C2 $P_{\alpha} \neq \emptyset$ and $P_{\alpha} \subset \{0,\alpha\}^n, 0 < \alpha \leq 1$
- C3 There is no nonempty open set $A \subseteq \Delta$ such that γ is constant on A
- C4 Y is weakly coherent

where $P_{\alpha} = \{\underbrace{X} \in \Delta \mid \gamma(X) > \alpha \text{ whereas } \gamma(Y) < \alpha \text{ for all } \underbrace{Y} < X \}$ and where $\underbrace{Y} < X$ means that $\underbrace{Y} < X$ but that $\underbrace{Y} \neq X$.

Some consequences of these axioms are deduced in Section 2, and in Section 3 we present our main results: an axiomatic characterization of the Barlow-Wu CSF and an analogous characterization of the Natvig CSF.

Our approach was suggested by the Borges-Rodrigues characterizations of the Barlow-Wu and Natvig multistate structure functions [5] though, as we show in Section 4, their characterizations are incorrect.

SOME DEDUCTIONS FROM THE AXIOMS

Let $U_{\alpha} = \{\underbrace{X} \in \Delta | \gamma(\underbrace{X}) \geq \alpha\}$ and $L_{\alpha} = \{\underbrace{X} \in \Delta | \gamma(\underbrace{X}) \leq \alpha\}$, $0 \leq \alpha \leq 1$. Further, define $K_{\alpha} = \{\underbrace{X} \in \Delta | \gamma(\underbrace{X}) \leq \alpha \text{ whereas } \gamma(\underbrace{Y}) > \alpha \text{ for all } \underbrace{Y} > \underbrace{X}\}$, $0 \leq \alpha < 1$.

Proposition 2.1

Let Y be a CSF.

- (i) γ is right (left)-continuous if and only if each $U_{\alpha}(L_{\alpha})$ is closed.
- (ii) If γ is right (left)-continuous, then each $P_{\alpha}(K_{\alpha})$ is nonempty and $X \in V_{\alpha}(L_{\alpha})$ if and only if $X \geq (\leq) Y \in P_{\alpha}(K_{\alpha})$.
- (iii) If γ is continuous, then $\gamma(P_{\alpha}) = \{\alpha\}$, $0 < \alpha \le 1$, and $\gamma(K_{\alpha}) = \{\alpha\}$, $0 \le \alpha < 1$.

<u>Proof</u>: The proofs of (i) and (iii) are straightforward; see [4] for the proof of (ii).

Proposition 2.2

If γ is a continuous CSF, conditions C2 and

C2'
$$K_{\alpha} \neq \emptyset$$
 and $K_{\alpha} \subset \{\alpha,1\}^n$, $0 \leq \alpha < 1$

are equivalent.

<u>Proof</u>: Since γ is continuous, each K_{α} is nonempty. We show that, if C2 holds, then $K_{\alpha} \subset \{\alpha,1\}^n$ for all $\alpha \in [0,1)$.

Suppose, conversely, that for some $\alpha \in [0,1)$ there exists a vector $Y \in K_{\alpha}$ such that $Y \notin \{\alpha,1\}^n$. Then there exists at least one component, k say, such that $Y_k \notin \{\alpha,1\}$. Either $0 \le Y_k < \alpha < 1$ or $0 \le \alpha < Y_k < 1$; we consider these two cases separately.

Suppose, firstly, that $0 \le Y_k < \alpha < 1$. By Proposition 2.1, $\gamma(\underline{Y}) = \alpha$ and $\gamma(\delta_k,\underline{Y}) > \alpha$ if $Y_k < \delta < \alpha$. Let $\gamma(\delta_k,\underline{Y}) = \xi$; then $(\delta_k,\underline{Y}) \in U_\xi$. Since U_ξ is closed there exists, by Proposition 2.1, an $\underline{X} \le (\delta_k,\underline{Y})$ such that $\underline{X} \in P_\xi$. Now $\underline{Y} \notin U_\xi$ and so $Y_k < X_k \le \delta$. Thus $0 \le Y_k < X_k \le \delta < \alpha < \xi$ and so $\underline{X} \notin \{0,\xi\}^n$, in contradiction to C2.

Suppose, now, that $0 \le \alpha < Y_k < 1$. Again $\gamma(Y) = \alpha$. Let $\gamma(1_k, Y) = \delta > \alpha$. Since $\gamma(x_k, Y)$ is a continuous, nondecreasing function of x for fixed (\cdot_k, Y) , it follows from the intermediate value theorem that, for given ξ with $\alpha < \xi < Y_k \wedge \delta$, there exists a $w \in (Y_k, 1)$ such that $\gamma(w_k, Y) = \xi$. Thus $(w_k, Y) \in U_\xi$ and hence there exists an $X \le (w_k, Y)$ such that $X \in P_\xi$. Now $Y \notin U_\xi$ and so $Y_k < X_k \le w$. It follows that $0 \le \alpha < \xi < Y_k < X_k \le w$ and hence $X \notin \{0, \xi\}^n$, in contradiction to C2.

Thus, a continuous CSF satisfying C2 also satisfies C2'. A similar argument verifies the converse. \Box

Proposition 2.3

If γ is a CSF which satisfies C1, C2 and C3, then $\gamma(\{0,\alpha\}^n) = \{0,\alpha\}$ for all $\alpha \in [0,1]$.

<u>Proof</u>: If $\alpha = 0$ there is nothing to prove, so suppose that, for some $\alpha \in (0,1]$, there exists a vector $X \in \{0,\alpha\}^n$ such that $\beta = \gamma(X) \notin \{0,\alpha\}$. It is easily seen that $0 < \beta < \alpha$ and that $X \neq \emptyset$ or α , and hence we can write

$$X_{ij} = \begin{cases} 0 & \text{for } j=1,2,\ldots,k \\ \alpha & \text{for } j=k+1,\ldots,n \end{cases}$$

for some k with $1 \le k \le n-1$.

Since $X \in U_{\beta} \cap L_{\beta}$, and both are closed, it follows from Proposition 2.1 that there exist a $Z \in P_{\beta}$ and a $W \in K_{\beta}$ such that $Z \leq X \leq W$. This ordering will only hold if $Z \in \{0,\beta\}^n - \{0\}$ satisfies $Z_{i} = 0$ for $j=1,2,\ldots,k$ and if $W \in \{\beta,1\}^n - \{1\}$ satisfies $W_{i} = 1$ for $j=k+1,\ldots,n$ and so $A = (Z_1,W_1)\times\cdots\times (Z_n,W_n) \subset \Delta$ is open. Further, since $Z \in P_{\beta}$ and $W \in K_{\beta}$, it follows that $\gamma(X) = \beta$ for all $X \in A$, in contradiction to C3. Thus $\gamma(X) \in \{0,\alpha\}$ as claimed. \square

Proposition 2.4

If γ is a CSF which satisfies C1, C2 and C3, then $P_{\alpha} = \alpha P_{1}$ for all $\alpha \in (0,1]$.

<u>Proof</u>: Suppose that $\alpha < 1$, otherwise there is nothing to prove, and let $X \in P_{\alpha}$ so that $\gamma(X) = \alpha$. Then $X < \frac{1}{\alpha X}$ and so $\gamma(X) \le \gamma(\frac{1}{\alpha X})$. Since $\frac{1}{\alpha X} \in \{0,1\}^n$, it follows from Proposition 2.3 that $\gamma(\frac{1}{\alpha X}) = 1$. We claim that $\frac{1}{\alpha X} \in P_1$.

Suppose, conversely, that $\frac{1}{\alpha}X \notin P_1$. Since U_1 is closed, it follows from Proposition 2.1 that there exists a $W < \frac{1}{\alpha}X$ such that $W \in P_1$. Consider the vector $\alpha W \in \{0,\alpha\}^n$; it is easily seen that $\gamma(\alpha W) = \alpha$ and thus there exists a vector $\alpha W < X$ such that $\alpha W \in U_\alpha$. This contradicts the assumption that $X \in P_\alpha$ and hence $\frac{1}{\alpha}X \in P_1$ as claimed. This holds for all $X \in P_\alpha$ and so $P_\alpha \subset \alpha P_1$.

Similarly, it can be shown that $\alpha P_1 \subset P_{\alpha}$.

3. THE CHARACTERIZATION THEOREMS

Theorem 3.1

A CSF γ is of the Barlow-Wu type if and only if it satisfies conditions C1, C2, C3 and C4.

<u>Proof</u>: It is easily verified that the Barlow-Wu CSF satisfies C1, C2, C3 and C4. To prove the converse, observe that

$$\gamma(X) \ge \alpha \iff X \ge Y \in P_{\alpha}$$

$$\iff \min_{\{i \mid Y_i = \alpha\}} X_i \ge \alpha \text{ for some } Y \in P_{\alpha}$$

$$\iff \max_{Y \in P_{\alpha}} \min_{\{i \mid Y_i = \alpha\}} X_i \ge \alpha$$

$$\underset{\gamma \in \alpha P_1}{\longrightarrow} \max \quad \min_{\{i \mid Y_i = \alpha\}} X_i \geq \alpha \text{ by Proposition 2.4}$$

$$\underset{Z \in P_1}{\Longleftrightarrow} \max \quad \min_{\{i \mid Z_i = 1\}} X_i \ge \alpha \text{ where } Z = \frac{1}{\alpha} Y.$$

This holds for all $X \in \Delta$ and $\alpha \in (0,1]$ and so

$$\gamma(X) = \max_{Z \in P_1} \min_{\{i \mid Z_i = 1\}} X_i.$$

Write $P_{\underline{i}} = \{\underline{X}^{(1)}, \dots, \underline{X}^{(N)}\}$ and let $T_{\underline{j}} = \{i \in C \mid X_{\underline{i}}^{(j)} = 1\}$. By the definition of P_1 , it is clear that each $T_{\underline{j}}$ is nonempty and that $T_{\underline{j}} \not\subset T_k$ for all $j,k=1,2,\ldots,N$ with $j \neq k$. Thus

$$\gamma(X) = \max_{1 \le j \le N} \min_{i \in T_{j}} X_{i}$$

where each $T_j \subset C$. Condition C4 ensures that $\bigcup_{j=1}^{N} T_j = C$, completing the proof. \square

Theorem 3.2

A CSF γ is of the Natvig type if and only if it satisfies C2 and

- Cl' Y is right-continuous
- C4' For each $i \in C$ and all $\alpha \in (0,1]$, there exists an $X \in \Delta$ such that $\gamma(\alpha_i,X) \geq \alpha$ whereas $\gamma(\beta_i,X) < \alpha$ for all $\beta < \alpha$.

<u>Proof:</u> Baxter [3] proves that Natvig CSFs are right-continuous, and it is readily seen that such functions satisfy C2 and C4'. Conversely, from the preceding proof,

$$\gamma(X) \ge \alpha \iff \max_{X \in P_{\alpha}} \min_{\{i \mid Y_i = \alpha\}} Z_{\alpha i} = 1$$

where $Z_{\alpha i}$ is the indicator of $\{X_i \ge \alpha\}$ $(0 < \alpha \le 1, X \in \Delta)$. Write $P_{\alpha} = \{X_i^{(\alpha,1)}, \ldots, X_i^{(\alpha,N(\alpha))}\}$ and let $T_j^{\alpha} = \{i \in C \mid X_i^{(\alpha,j)} = \alpha\}, j = 1,2,\ldots,N(\alpha)$. Then $Y(X) \ge \alpha$ if and only if $\varphi_{\alpha}(X_{\alpha}) = 1$ where

$$\phi_{\alpha}(z_{\alpha}) = \max_{1 \leq j \leq N(\alpha)} \min_{i \in T_{j}^{\alpha}} z_{\alpha i}.$$

We claim that the binary functions $\{\phi_{\alpha},\ 0<\alpha\le 1\}$ satisfy the conditions of the definition of the Natvig CSF.

It is clear that ϕ_{α} is nondecreasing in each argument for all $\alpha \in (0,1]$ and that $\phi_{\alpha}(Z_{\alpha})$ is nonincreasing in α for fixed X.

To verify left-continuity, it is sufficient to consider the point at which the function decreases. Thus, suppose that $\gamma(X) = \alpha$ (0<\alpha<1); then there exists an $X' \leq X$ such that $X' \in P_{\alpha}$. Clearly, $\gamma(X') = \alpha$ and hence $\phi_{\alpha}(Z'_{\alpha}) = 1$ whereas, if $\beta > \alpha$, $\gamma(X') < \beta$ and so $\phi_{\beta}(Z'_{\beta}) = 0$. Thus $\phi_{\alpha}(Z_{\alpha})$ is left-continuous as claimed.

Lastly, observe that, by C4', for each $i \in C$ and all $\alpha \in (0,1]$, there exists an $X \in \Delta$ such that $\phi_{\alpha}(1_1, Z_{\alpha}) = 1$ whereas $\phi_{\alpha}(0_1, Z_{\alpha}) = 0$ and so each ϕ_{α} is coherent.

This completes the proof. \square

4. SOME REMARKS ON THE BORGES-RODRIGUES CHARACTERIZATION

Let $S = \{0,1,\ldots,M\}, M \ge 1$. A nondecreasing mapping $\Phi \colon S^n \mapsto S$ with $\Phi(0) = 0$ and $\Phi(M) = M$ is said to be a <u>multistate structure function</u> (MSF). It is <u>weakly coherent</u> if $\max \left[\Phi(M_1,X) - \Phi(0_1,X)\right] \ge 1$ for each $i \in C$. $X \in S^n$

$$\Phi(X) = \max_{1 \le j \le r} \min_{i \in P_{j}} X_{i} (X \in S^{n})$$

where P_1, \ldots, P_r are the r minimal path sets of a binary coherent structure function, then Φ is said to be a Barlow-Wu MSF [1]. If $\Phi(X) \geq j$ if and only if $\Phi_j(Y_j) = 1$ (Xes, j=1,2,...,M) where $\{\Phi_1, \ldots, \Phi_M\}$ is a collection of binary coherent structure functions such that $\Phi_j(Y_j)$ is nonincreasing in j for fixed X, and where Y_j is the indicator of $\{X_i \geq j\}$, then Φ is said to be a Natvig MSF [6].

Borges and Rodrigues [5] present axiomatic characterizations of the Barlow-Wu and Natvig MSFs in terms of the following conditions:

- Bl For every $X \in S^n$ with $\Phi(X) \ge k \ge 1$, there exists a $Y \in \{0,k\}^n$ such that $Y \le X$ and $\Phi(Y) \ge k$
- B2 $\Phi(\{0,M\}^n) = \{0,M\}$
- B3 φ is weakly coherent.

Borges and Rodrigues [5] claim

- (1) Φ is a Barlow-Wu MSF if and only if it satisfies B1, B2 and B3
- (2) ϕ is a Natvig MSF if and only if it satisfies B1 and B3.

Both claims are false as the following examples attest.

Example 4.1

Consider the MSF ϕ_1 : $\{0,1,2\}^2 \leftrightarrow \{0,1,2\}$ defined as follows:

$$\begin{aligned} & \Phi_1(0,0) = 0 & \Phi_1(0,1) = 0 & \Phi_1(0,2) = 2 \\ & \Phi_1(1,0) = 0 & \Phi_1(1,1) = 1 & \Phi_1(1,2) = 2 \\ & \Phi_1(2,0) = 2 & \Phi_1(2,1) = 2 & \Phi_1(2,2) = 2. \end{aligned}$$

This satisfies B1, B2 and B3 and yet is clearly not of the Barlow-Wu type since the only Barlow-Wu MSFs of size two are $X_1 \wedge X_2$ and $X_1 \vee X_2$. Notice in particular that Φ_1 provides a counter-example to Lemma 4 of [5].

Example 4.2

Let $\phi_1(Y_{11},Y_{12})=Y_{11}$ and $\phi_2(Y_{21},Y_{22})=Y_{21}\wedge Y_{22}$ and define the MSF $\phi_2\colon\{0,1,2\}^2\mapsto\{0,1,2\}$ as the function which satisfies $\phi_2(X_1,X_2)\geq j$ if and only if $\phi_j(Y_{j1},Y_{j2})=1$ where Y_{ji} is the indicator of $\{X_i\geq j\}$ (i,j,=1,2). This is clearly not a Natvig MSF since the binary function ϕ_1 is not coherent, but it is easily verified that ϕ_2 satisfies B1 and B3.

REFERENCES

- [1] Barlow, R. E. and Wu, A. S. (1978). "Coherent Systems with Multi-Components", Math. Operat. Res., 3, 275-281.
- [2] Baxter, L. A. (1984). "Continuum Structures I", J. Appl. Prob., 2 (to appear).
- [3] Baxter, L. A. (1984). "Continuum Structures II", submitted for pu
- [4] Block, H. W. and Savits, T. H. (1984). "Continuous Multistate Structure Functions", Operat. Res., 32, 703-714.
- [5] Borges, W. de S. and Rodrigues, F. W. (1983). "An Axiomatic Characterization of Multistate Coherent Structures", Math. Operat. Res., 8, 435-438.
- [6] Natvig, B. (1982). "Two Suggestions of How to Define a Multistate Coherent System", Adv. Appl. Prob., 14, 434-455.

END

FILMED

3-85

DTIC

